Strategic Reasoning for the Resolution of Assignment Problems in Goal- and Actor-Oriented Requirements Engineering

Christophe Chareton

Onera, Toulouse

December 18, 2012

1 Language Кн for Requirements Engineering

- 2 Formalisation
- 3 Assignment problems
- 4 Conclusion : interests of the approach and future works

1 Language Кн for Requirements Engineering

2 Formalisation

3 Assignment problems

4 Conclusion : interests of the approach and future works

Requirements engineering

- Identify requirements
- Derive specifications from functional requirements
- We concentrate on modeling languages

- Formalize the goal's refinement description down to specifications of transitions of the system: Kaos
- Care the realizability of the goals trough assignments of roles to actors: TROPOS-I*

Unify in a single language :

- The relation pursued goals-operations and its dynamic aspects (Kaos)
- Intentional agents and the confrontation between available agents (actors) and required agents (roles) (TROPOS-I*)
- Give a semantic treatment of the capabilities af actors and being able to discuss their ability to play roles: the assignment problems

Leaf goals, operations, roles and assignment

Expression of Кні in the logic USL

We build USL in three successive steps:

- Cond_{KHI}: a set of comparisons of values between variables and constants
- The LTL language whose atoms are in Cond_{KH} : LTL_{KH}
- Introduction of three operators for strategy treatment:

There is a strategy *x* such that $\varphi(x)$

 $({\sf A} \triangleright x)\varphi$

 $\langle \langle \mathbf{X} \rangle \rangle \varphi$

If agents in A play along strategy for x then φ

 $(A \not > x)\varphi$

If agents in A do not play anymore along strategy for x then φ We get a generalization of SL (Fabio Mogavero, Aniello Murano, Giuseppe Perelli, Moshe Y. Vardi)

1 Language Кні for Requirements Engineering

2 Formalisation

3 Assignment problems

4 Conclusion : interests of the approach and future works

Preliminary definitions

Definition

- A Non-deterministinc Alternating Transition System (NATS) is a tuple M = (Σ, Μ, Π, π, δ) where :
 - *M* is a set of states, called the domain of the *NATS*, Π is the set of atomic propositions in the language and π is a valuation function, from *M* to P(Π)
 - $\delta: \Sigma \times M \to \mathcal{P}(\mathcal{P}(Q))$ is a transition function mapping a pair $\langle agent, state \rangle$ to a non-empty family of choices of possible next states.
- A strategy is a function σ from $\Sigma \times M$ to $\mathcal{P}(M)$ such that for all $(a, s) \in \Sigma \times M, \sigma(a, s) \in \delta(a, s)$
- A context κ is a finite word upon (Σ × X)*, representing the structure of the active bindings.
- A memory μ is a partial function from X to Strat, storing the memory instanciations for quantified strategies.

Let M be a *NATS*, then for all memory μ , context κ , state s:

- $\mathcal{M}, \mu, \kappa, s \models \langle\!\langle x \rangle\!\rangle \varphi$ iff there is a strategy $\sigma \in Strat$ such that $\mathcal{M}, \mu[x \to \sigma], \kappa, s \models \varphi$
- $\mathcal{M}, \mu, \kappa, s \models (A, x \triangleright \varphi)$ iff for all λ in $out(\mu, \kappa[A \to x]), \mathcal{M}, \mu, \kappa[A \to x]\lambda \models \varphi$

 $\blacksquare \mathcal{M}, \mu, \kappa, \mathbf{s} \models (\mathbf{A}, \mathbf{x} \not\models \varphi) \text{ iff for all } \lambda \text{ in } out(\mu, \kappa[\mathbf{A} \leftarrow \mathbf{x}]), \mathcal{M}, \mu, \kappa[\mathbf{A} \leftarrow \mathbf{x}]\lambda \models \varphi$

- 1 Language Кні for Requirements Engineering
- 2 Formalisation
- 3 Assignment problems
 - 4 Conclusion : interests of the approach and future works

Local Correctness is the property of a model such that each of its role can be invidually played by its assigned coalition.

Definition (LC)

Let \mathcal{K} be an instance of K_H, then the assignment is locally correct, written LC(*assignedTo*), if

$$\mathcal{G}_{\mathcal{K}}, \emptyset, \emptyset, s \models \bigwedge_{r_i \in roles} \langle\!\langle x_{r_i} \rangle\!\rangle (r_i.assignedTo.allies, x_{r_i}) \llbracket r_i \rrbracket$$

Global correctness

Global Correctness is the property of a model such that each coalition assigned roles can play them coherently altogether?

Definition (GC)

Let \mathcal{K} be an instance of KHI, then the assignment is globally correct, written GC(*assignedTo*), if

$$\mathcal{G}_{\mathcal{K}}, \emptyset, \emptyset, s \models \langle\!\langle x \rangle\!\rangle \bigwedge_{r \in roles} (r.assignedTo.allies, x) \llbracket r \rrbracket$$

Positive interaction

Positive interaction is the relation between roles r_1 and r_2 such that coalition assigned r_1 helps coalition assigned r_2 to play it when itself playing r_1 . Two modalities:

Possibility

```
Definition (PPI)
```

Let \mathcal{K} be an instance of K_{HI}. Then for all roles r_1 and r_2 in \mathcal{K} , r_1 possibly interacts positively with r_2 , written PPI(r_1, r_2) if

 $\mathcal{G}_{\mathcal{K}}, \emptyset, \emptyset, \mathbf{s} \models$ $\langle x \rangle \langle (r_1.assignedTo.allies, x)(\llbracket r_1 \rrbracket \land \langle y \rangle \langle (r_2.assignedTo.allies, y) \llbracket r_2 \rrbracket)$

Positive interaction

Positive interaction is the relation between roles r_1 and r_2 such that coalition assigned r_1 helps coalition assigned r_2 to play it when itself playing r_1 . Two modalities:

Necessity

Definition (NPI)

Let \mathcal{K} be an instance of K_H. Then for all roles r_1 and r_2 of \mathcal{K} , r_1 necessarily interacts positively with r_2 , written PPI(r_1 , r_2) if

 $\mathcal{G}, \emptyset, \emptyset, \mathsf{s} \models$

 $\llbracket x \rrbracket (r_1.assignedTo.allies, x) (\llbracket r_1 \rrbracket \to \langle \langle y \rangle (r_2.assignedTo.allies, y) \llbracket r_2 \rrbracket)$

- 1 Language Кні for Requirements Engineering
- 2 Formalisation
- 3 Assignment problems
- 4 Conclusion : interests of the approach and future works

Our language gives ...

- ...a semantic for:
 - The dynamics of operations inherited from Kaos
 - A concept of intentional actors : each one pursues its own goals
 - A distinct concept of roles : agents as required entites
 - The expression of several problem of assignments problems
- ... an algorithm to check the relative assignment solutions

- Identify laking actors : in case there is no possible assignment of roles to present actors, non-assignable roles are the actors to introduce by the machine.
- Further characterizations of strategies:
 - Ensure a role *rl* assigned to an actor *a* does not contradict its pursued goals
 - Compare the efficiency of different strategies in case they do not fully ensure the satisfaction of the roles.

Thank you for your attention

Any question?