
Updatable Strategy Logic

Christophe Chareton Julien Brunel David Chemouil

Onera, Toulouse

January 8, 2013

1/25



Outline

1 Introduction with language Khi for Requirements Engineering

2 State of the art: towards USL

3 Syntax and semantics

4 Expressive power and model-checking

5 Conclusion and future works

2/25



Requirements engineering

PROBLEM SOLUTIONSpecifications

Goals

Needs

Architecture

ENVIRONMENT SYSTEM

Requirement engineering

Identify requirements
Derive specifications from functional requirements

3/25



Khi

Khi in three sentences:
The progressive goals refinement leads to specifications that are
expressed in LTL.
These specifications are gathered into roles (LTL).
We focus on the problem of a possible assignment of those roles
to coalitions of agents.

Main stakes:
Provide sets of specifications that are structured by the agents
that have to ensure them.
Identify those of these specifications that we cannot ensure with
the provided agents.

4/25



Formalism, a first approach with Alternating-Time
Temporal logic (ATL: Alur, Henzinger, Kupferman)

Problem:
A set R of roles and a set Σ of actors.
An assignment relation ⊆ R × Σ.
Question: for all role r ∈ R, are the concerned agents able to
ensure r (LTL)?

ATL
ATL enables to express properties of capabilities of agents to
ensure temporal properties.

〈〈A〉〉ϕ

Agents in coalition A are able to ensure the satisfaction of
property expressed by ϕ whatever the other agents do.

5/25



Problems met

Take into account the interaction between coalitions
Two roles r1 and r2, two coalitions A1 and A2.
A1 can ensure r1 but A2 cannot ensure r2.
Is A1 able to ensure its role and to enable A2 to ensure its role at
the same time?
Not expressible in ATL

〈〈A1〉〉(r1 ∧ 〈〈A2〉〉r2)

An agent may be part of several coalitions:
If A1 ∩A2 , ∅, then how to express that A1 and A2 can ensure their
respective roles by playing along a non-contradictory strategy?

〈〈A1〉〉r1 ∧ 〈〈A2〉〉r2

6/25



Strategy Logic (SL: Mogavero, Murano, Perelli, Vardi )

An observation:
〈〈A〉〉ϕ

There is a strategy x such that if A plays along x then ϕ is
ensured.
Starting idea for SL: separate both elements:

A quantifier 〈〈x〉〉: 〈〈x〉〉ϕ is true iff there is a strategy x such that ϕ
is ensured.
A strategy binder (A , x): (A , x)ϕ is true iff if A plays along strategy
for x then ϕ is ensured.

Sub-formulas are evaluated in contexts that stores the
quantifiers and binders.
At evaluation of temporals, each agent is bound to a strategy.
Enables to treat the first problem:

〈〈x1〉〉(A1, x1)(~x2�(Σ\A1, x2)(r1 ∧ 〈〈x3〉〉(A2, x3)(r2))

The second one still holds . . .
7/25



Semantics of SL: CGS

Concurrent Game Structures:
Some elements from classical Kripke structures:

A set of states M
A set of atomic propositions At
A valuation function, from M to P(At)

Transitions:
A set of agents Σ
A finite set of possible actions for the agents A ( N
In each state, each agent plays a choice and the transitions are
determined by the expressed actions : δ is a function from M × AΣ

to M.

s0
¬p

s1
p

s2
¬p

8/25



Semantics of SL: CGS

Concurrent Game Structures:
Some elements from classical Kripke structures:

A set of states M
A set of atomic propositions At
A valuation function, from M to P(At)

Transitions:
A set of agents Σ
A finite set of possible actions for the agents A ( N
In each state, each agent plays a choice and the transitions are
determined by the expressed actions : δ is a function from M × AΣ

to M.

s0
¬p

s1
p

s2
¬p

δ(a, c2) δ(a, c1), δ(a, c2)

δ(a, c1) δ(a, c1), δ(a, c2)

9/25



Semantics of SL: quantifiers and binders

A strategy is a function σ from M∗ to A
A context κ maps agents and strategy variables to strategies.

Definition
Satisfaction
M, κ, s |=SL 〈〈x〉〉ϕ iff there is a strategy σ such
M, κ[x → σ], s |=SL ϕ

M, κ, s |=SL (a, x)ϕ iffM, κ[a → κ(x)], s |=SL ϕ

where κ[a → σ] is obtained from κ by replacing its value for a with
σ.

SL uses contexts that do not enable to compose several strategies for
an agent

10/25



USL: main ideas

In SL: when a binder (A , x) occurs, current strategy for A is
automatically revoked.
Aims:

either update current strategy without revoking it.
either revoke it.

Means:
In general case, a binder (A B x) does not delete the strategies
previously bound to A .
We make explicit the, perhaps, revocation of strategy: introduction
of an unbinder (A 7 x) expressing it.
Delete the constraint for temporals only under complete context.

Observation: The SL binder (A , x) again is decomposed into two
operations

Agents in A are unbound from their current strategies.
They are bound to strategy instanciating x.

11/25



Syntax

Definition
Let Σ be a set of agents, At a set of propositions and X a set of
variables, USL(Σ,At,X ) is given by the following grammar:

State formulas:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈x〉〉ϕ | (A B x)ψ | (A 7 x)ψ

Path formulas:

ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ U ψ | ◦ψ

where p ∈ At,A ⊆ Σ, x ∈ X .

Closed formulas are evaluated with no context.

12/25



Semantics: progression of the presentation

Semantics:
Structures (NATS)
Adaptation of the notion of contexts: strategies and plans
Plan transformations
Satisfaction relation

13/25



Semantics: NATS

Definition
A Non-deterministic Alternating Transition System (NATS) is a tuple
M = 〈Σ,M,At, π, δ〉 where:

A set M of states, a set At of atomic propositions, a valuation
function π, from M to P(At), a set Σ of agents.
A transition function δ : Σ ×M → P(P(M)). It maps a pair
〈agent , state〉 to a non-empty family of choices of possible next
states.

Choices depend on states and agents.
δ directly gives the sets of potential successor.

14/25



Semantics: Strategies and plans

Definition

A strategy is a function σ from Σ ×M∗ to P(M) such that for all
(a, τ) ∈ Σ ×M∗, σ(a, τ) ∈ δ(a, last(τ)).
A memory µ is a partial function from X to Strat , storing the
instantiations for quantified strategies.
A context κ is a finite list of pairs in (P(Σ) × X), representing the
structure of the active bindings.
A plan Π is a pair of a memory and a context. A plan induces a
function from M∗ to P(M): (µ, (A , x))(τ) = µ(x)(A , τ) and
(µ, κ · (A , x))(τ) =

(µ, κ)(τ) ∩ µ(x)(A , τ) iff it is not empty,
else (µ, κ)(τ)

15/25



Semantics: Plan transformations

The semantics also uses the following transformations for a context:
A plays x : κ[A → x] = κ · (A , x)

A revokes x:
(A1, x)[A 9 x] = (A1\A , x)
(κ · (A1, x))[A 9 x] = κ[A 9 x](A1\A , x)

Quantifier:
for all xi in dom(µ)\{x}, µ[x → σ](xi) = µ(xi)
µ[x → σ](x) = σ.

16/25



Semantics: satisfaction

Definition
LetM be a NATS, then for all memory µ, context κ and state s,
M, µ, κ, s |= 〈〈x〉〉ϕ iff there is a strategy σ ∈ Strat such that
M, µ[x → σ], κ, s |= ϕ

M, µ, κ, s |= (A B x)ϕ iff for all λ in
out(µ, κ[A → x]),M, µ, κ[A → x], λ |= ϕ

M, µ, κ, s |= (A 7 x)ϕ iff for all λ in
out(µ, κ[A 9 x]),M, µ, κ[A 9 x], λ |= ϕ

Let ϕ be a closed formula, thenM, s |= ϕ iffM, µ∅, κ∅ |= ϕ.

The second problem from Khi is resolved:

If A1 ∩ A2 , ∅, can A1 and A2 ensure their respective roles by playing
along a non-contradictory strategy?

〈〈x1〉〉(A1 B x1)(r1 ∧ 〈〈x2〉〉(A2 B x2)r2)
17/25



Expressive power: Sustainable capability

A notion of sustainable capabilities:
A capability for an agent that remains active even if already
employed.
Intuitive example: A lice can always buy car

She can buy a car once and decide when
In SL: 〈〈x1〉〉(a, x1)2(〈〈x2〉〉(a, x2) ◦ buy)
In USL: 〈〈x1〉〉(a B x1)2(〈〈x2〉〉(a 7 x1)(a B x2) ◦ buy)

s0
¬buy

s1
buy

s2
¬buyc2 c1, c2

c1 c1, c2

True at s0 by strategy allways-c1
She can remain able to buy it, but only provided she never does.
Her capability to buy a car is not sustainable.

18/25



Expressive power: sustainable capability

Intuitive example: A lice can always buy car
She can buy as many as she wants whenever she wants:
In USL: 〈〈x1〉〉(a B x1)2(〈〈x2〉〉(a B x2) ◦ buy)

s0
¬buy

s1
buy

s2
¬buyc2 c1, c2

c1 c1, c2

false at s0 since contraditory strategies.

19/25



Expressive power: sustainable capability

Intuitive example: A lice can always buy car
She can buy as many as she wants whenever she wants:
In USL: 〈〈x1〉〉(a B x1)2(〈〈x2〉〉(a B x2) ◦ buy)

s0
¬buy

s1
buy

s2
¬buy

c1, c2

c1, c3

c3

c1, c3 c1, c2
c1, c2, c3

true at s0:
any occurence of c2 from s0 or s1 buys a car.
always-c1 enables to maintain the capability.
always-c1 is not contradictory with any occurence of c2

20/25



Expressive power: results

Theorem
There is a transformation of CGS G′ to NATS G′ and from formulas θ
in SL to formulas θ′ in USL such that for all θ ∈ SL and for all CGS
G,G |= θ iff G′ |= θ′. Furthermore, upon SL{1}, this transformation
reduces to the actions-choices equivalence.

Theorem
There is a formula in USL{1} not expressable in SL{1}.

We proved the second theorem with formula
Γ∞ := 〈〈x〉〉(a B x)2(〈〈y〉〉(a B y) ◦ p ∧ 〈〈y〉〉(a B y) ◦ ¬p). It asserts that
a is sustainably able to decide whether p holds or not in next state.

21/25



Model-checking: results

Theorem

The model-checking of USL is NONELEMENTARYTIME
decidable.
The model-checking of USL under memoryless strategies
(USL0) is PSPACE-complete.

22/25



Conclusion

A formalism that:
Enables composition of strategies for one agent and the
sustainable capabilities.
Unifies it with the classical branching-time mechanisms of
strategies’ revocation.
Uses strategies that are both updatable and revocable.
Holds similar model-checking results as comparable formalisms
(SL, ATLsc, Brihaye, Da Costa, Laroussinie, Markey)

23/25



Future works

Expressive power:
Express sustainable capabilities as fixed points properties,
compare USL with extensions of µ−calculus dealing with
strategies (QDµ, S. Pinchinat).
Further explore the possibilities enabled by free use of the
unbinder.

Related to Khi:
Further criteria for model correctness: ensure a role rl assigned to
an actor a does not contradict its pursued goals.
Compare the efficiency of different strategies in case they do not
fully ensure the satisfaction of the roles.

24/25



Thank you for your attention

Any question?

25/25


	Introduction with language Khi for Requirements Engineering
	State of the art: towards USL
	Syntax and semantics
	Expressive power and model-checking
	Conclusion and future works

